FINAL EXAM
SPRING 2011
MATH 165
1. (4 points) Show that \(\lim_{x \to 3}(2x + 1) = 7 \), using the \(\epsilon-\delta \) definition of limit.
2. (12 points) If the limit exists, find its value. If it does not exist explain WHY.

(a) \(\lim \limits_{x \to -1} \frac{x^2 - 1}{x^2 - x - 2} \)

(b) \(\lim \limits_{x \to 1} \frac{\sqrt{5x^2 + 4}}{x^2 + 2} \)

(c) \(\lim \limits_{x \to 2^-} \frac{\sqrt{x - 2}}{x^2 + 1} \)

(d) \(\lim \limits_{x \to \infty} \frac{-1 + 2x + x^3}{4 - x^2 - 3x^3} \)
3. (12 points) Compute the derivatives of the following functions:

(a) \(f(x) = \frac{2}{\sqrt{x}} + \tan(5x). \)

(b) \(g(x) = \cos(\sin x^2). \)

(c) \(h(x) = \int_1^{x^2} \tan t \, dt. \)
4. (6 points) Do implicit differentiation to find the slope of the tangent line to the curve
\[y^2 - x + 1 = 0 \]
at the point \((2, -1)\).
5. (12 points) Given \(f(x) = x^3 - 3x + 2 \),

(a) Where is \(f \) increasing?

(b) Where is \(f \) concave up?

(c) What are the local maxima and minima?
6. (6 points) Find the horizontal and vertical asymptotes of the curve

\[y = \frac{3x^2 + 2x + 1}{x - 1}. \]

Justify your answers with the appropriate limits.
7. (6 points) Find the point on the curve $x^2 - y^2 = 1$ that is closest to $(2, 1)$.
8. (4 points) Set up (but do not compute) the Riemann Sum for the area under the graph of the function \(f(x) = x^3 - x \), with \(2 \leq x \leq 3 \).

Use RIGHT-HAND endpoints and 5 subintervals.
9. (16 points) Evaluate the following integrals:

(a) \(\int \cos x \sin^5 x \, dx \).

(b) \(\int x \sec(x^2) \tan(x^2) \, dx \).

(c) \(\int_0^1 \frac{x}{\sqrt{3x^2 + 1}} \, dx \).

(d) \(\int_{-1}^1 \frac{x}{\sqrt{x^4 + 5}} \, dx \).
10. (6 points) Sketch the region enclosed by the curves

\[x = y, \quad x = y^3. \]

Find the area of the region.
11. (8 points) Let \(A \) be the region bounded by the graphs of
\[y = \cos x \ , \quad y = \sin x \ , \quad \text{the } y\text{-axis}. \]

Set up (but do not compute) the integrals to find the volume of the solid generated by revolving \(A \) about

(a) the \(x\)-axis.

(b) the line \(x = -1 \).
12. (6 points) A force of 35N is required to hold a spring stretched 10 cm from its natural length. How much work is done when stretching the spring 5 cm further?
Bonus (4 points): Evaluate
\[\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt{x} - 1}. \]

Bonus (4 points): Evaluate
\[\int \frac{dx}{(2 + \sqrt{x})^3}. \]